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Abstract. We consider a simplified model of the magnetic structure of the two-dimensional
compound CaV4O9 in terms of interacting square plaquettes of spins with two distinct
antiferromagnetic exchange constants. We analyse the competition between two types of singlet
ground states and the Neel ordered one in terms of, respectively, numerical cluster expansion
and nonlinear spin wave theory. The resulting phase diagram agrees well with known quantum
Monte Carlo results and suggests a first-order transition between ordered and singlet ground
states as a function of the exchange constants.

The recent experimental observation of a spin gap in the layeredS = 1/2 antiferromagnet
CaV4O9 [1] has opened a new and interesting perspective in two-dimensional magnetism.
We discuss the simplest model of the undoped structure that consists of a square lattice of
elementary squares or ‘plaquettes’, which we will refer to as a CAVO lattice. The magnetic
exchange energy within the plaquettes (J0) and between the plaquettes (J1) is given by

Ĥ = J0

∑
�

SiSj + J1

∑
−

SiSj . (1)

Here ij represent nearest neighbours on edges of a plaquette and between adjacent
plaquettes, respectively. Additional (frustrating) couplings are ignored, although they are
believed to be necessary for quantitative agreement with experiments.

The nature of the ground state is easy to understand in two limits [2]. In the limit
of J1 � J0, the plaquettes form resonating valence-bond-type singlet states, with an
energy of− 1

2J0 per plaquette, and weak bondsJ1 serve as a perturbation. In the opposite
limit of J0 � J1 the interplaquette connections form singlets of energy− 3

8J1 per dimer
that are weakly interacting via plaquettes. This construction is qualitatively symmetric,
but the plaquettes are somewhat ‘stronger’, so that the critical ‘equilibrium’ region is
centred atJ1 ' 4

3J0. In this region, in addition to these two quantum singlet phases,
the antiferromagnetically ordered Neel state could also be competitive.

A variety of theoretical methods was applied to study the ground states of this model
as a function ofJ1/J0 but the results remain contradictory. Our purpose is to compare the
energies of three candidates for the ground state of model (1) and estimate the regions of
their stability in terms of the ratioJ1/J0. Unlike other approaches that attempted to treat the
system within a unified framework for allJ1/J0, we choose the most quantitatively reliable
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approach for each individual phase. For the two singlet states we develop a numerical
perturbation expansion (beyond the second order [2]) in the coupling ratioJ1/J0 or J0/J1,
whichever is smaller. The energy of the Neel state is estimated via the nonlinear spin wave
approximation, which gives a lower ground state energy than the linear approximation
reported in [3]. We also compare our results with ground state energies obtained by direct
numerical diagonalization of the Hamiltonian for different finite lattices of up to 24 spins
and with frustrating/nonfrustrating boundary conditions.

1. Cluster expansion for the ground state

The idea of the cluster expansion is quite general and works for any model with finite range
interactions provided the unperturbed Hamiltonian is a sum commuting blocks. For the
model under consideration and in both limitsJ1 � J0 andJ0 � J1 the perturbation is a sum
of exchange interactions between nearest neighbours, and the zero approximation (the first
or second term in (1) respectively) is a sum over independent plaquettes or dimers. Thus in
any given ordern of the perturbation parameter (the smaller of the coupling ratios) the total
correction to the ground state energy of an arbitrary lattice clusterc can be reorganized into
a sum over connected graphs that mark the interactions that were used and the unperturbed
blocks that were touched:

E(n)
c =

∑
g

Nc,gεg(n) . (2)

Hereεg(n) stands for the contribution of the graphg in the ordern andNc,g for the number
of ways the graphg can be embedded in the clusterc. The same relation holds for the
entire infinite lattice with properly normalized embedding numbersN∞(g).

The detailed analysis is rather tedious (see e.g. similar analysis [4] and references
therein), and we only list the resulting sequences of graphs and embedding numbers. To be
specific, consider theJ1 expansion about the plaquette state, with four graphs contributing
up to the fifth order

1(II ) 2(IV ) 3(IV ) 4(IV ) . (3)

We draw the graphs as being embedded in the CAVO lattice, marking theJ0 connections
by bold lines. The Roman superscript of a graph denotes the lowest order of perturbation
in which it contributes to (2). A connected graph contributes to ordern if n interactions
can be placed on the links of the graph (one or more per link) such that (i) each block is
touched at least twice (otherwise the block cannot return to its singlet ground state), and (ii)
no two parts of the graph are connected by only one interaction (it would vanish by spin
symmetry). Once the contributionsεg(n) of all necessary graphs are known, thenth-order
correctionsE(n)

c to the ground state energy of an arbitrary lattice clusterc can be calculated
using the embedding numbersNc,g. One can, however, invert the procedure and recover
the contributions of the graphs by solving the system of linear equations (2) forεg(n) in
terms of thenth-order correctionsE(n)

c of an appropriately selected set of small clustersc.
The most economic or ‘optimal’ set of clusters is obtained when each cluster embeds

some graph in the list of graphs exactly once. Note that the graphs are topological entities,
so that the choice of optimal clusters is generally not unique. Once a choice has been made,
there is a one-to-one correspondence between the graphs contributing to a given order and
the finite clusters carrying the information on their contributions. Therefore we can use the
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same pictures and labels for optimal clusters as for graphs. For the plaquette expansion the
embedding numbersNc,g of all graphs of (3) in all clusters of (3) are

Npla
c,g =


1 0 0 0
2 1 0 0
2 0 1 0
4 0 4 1


with rows of the matrix corresponding to clusters and columns corresponding to graphs.

The coefficientsE(n)
c are easily extracted from a polynomial fit of high-precision ground

state energies of the clusters in the list at several values of the coupling ratio. Having solved
for εg(n) from (2) we calculate (to the same fifth order) the ground state energy per site of
an infinite lattice with embedding constantsN

pla
∞,g = 1

4 (2 2 4 1) and obtain

Epla(J0, J1) = J0

[
−1

2
− 43

1152

(
J1

J0

)2

− 0.00723

(
J1

J0

)3

− 0.00308

(
J1

J0

)4

−0.0022

(
J1

J0

)5]
+ . . . . (4)

So we find five orders of the perturbation series for theinfinite lattice by diagonalizing only
four finite and relatively small clusters of up to 16 spins by use of conventional Lanczos
algorithms.

In the case of the dimer expansion in the small parameterJ0/J1 the unperturbed blocks
are smaller (two sites), so that we can reach seventh order of perturbation with clusters not
exceeding 12 sites. The list of graphs/clusters contains 13 entries

1(II ) 2(IV ) 3(IV ) 4(IV ) 5(IV ) 6(V I) 7(V I)

8(V I) 9(V I) 10(V I) 11(V I) 12(V I) 13(V II) (5)

in the same notations as (3), with the following matrix of embedding numbers

Ndim
c,g =



1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0
4 4 0 1 0 4 0 0 0 0 0 0 0
4 0 4 0 1 0 4 0 0 0 0 0 0
3 2 0 0 0 1 0 0 0 0 0 0 0
3 0 2 0 0 0 1 0 0 0 0 0 0
3 1 1 0 0 0 0 1 0 0 0 0 0
3 2 1 0 0 0 0 0 1 0 0 0 0
5 5 1 1 0 5 0 1 1 1 0 0 0
5 2 4 0 1 0 4 2 1 0 1 0 0
6 4 2 0 0 3 1 2 0 0 0 1 0
7 6 4 1 1 6 4 4 2 2 2 1 1



.

The embedding constants for the infinite lattice areNdim
∞,g = 1

4 (4 8 4 1 1 16 4 16 8 8 8 4 4), and
the ground state energy per site in the dimer expansion is

Edim(J0, J1) = J1

[
−3

8
− 3

32

(
J0

J1

)2

− 3

128

(
J0

J1

)3

− 0.02295

(
J0

J1

)4

−0.0213

(
J0

J1

)5

− 0.0240

(
J0

J1

)6

− 0.0205

(
J0

J1

)7]
+ . . . . (6)
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2. Nonlinear spin waves

We apply the conventional Holstein–Primakoff formalism, that parametrizes spins in terms
of harmonic oscillators. This approach provides results of a remarkable precision for the
s = 1/2 Heisenberg antiferromagnet on a square lattice (see [5] for review). The CAVO
lattice is treated as a square lattice with nodes containing four spins. In the approximation
of noninteracting spin waves, we find

Elinear
Neel (J0, J1) = −

(
J0 + 1

2
J1

) [
s(s + 1) − s

4

∫
Tr

{√
1 − γ 2(p, J0, J1)

} d2p

(2π)2

]
(7)

where the integral inp = (p1, p2) is over the square 2π × 2π Brillouin zone. This is
analogous to the result for the simple square lattice except thatγ (p, J0, J1) is now a 4× 4
matrix with two exchange parameters

γ (p, J0, J1) = 1

2J0 + J1


0 J0 J1eip1 J0

J0 0 J0 J1eip2

J1e−ip1 J0 0 J0

J0 J1e−ip2 J0 0

 .

The next correction of orderO(s0) is the average of quartic terms in the boson Hamiltonian
in the linearly reconstructed ground state. Its direct evaluation is rather tedious (see [6]),
but we have found a method to simplify the calculation. For bipartite lattices with two
equivalent sublattices one can prove

〈SaSb〉 = (s + cab)
2

for any pair of nearest-neighbour spins withcab being a constant of orders0. In other
words, every〈SaSb〉 is a full square in the nonlinear spin wave approximation. Therefore,
the nonlinear spin wave result may be found by (i) separating the contributions from different
types of nearest neighbours, (ii) completing the square for each of them and (iii) summing
up the results. Thus for the model (1) we arrive at

ENeel(J0, J1) = −
[
J0

(
s + 1

2
− C0

)2

+ 1

2
J1

(
s + 1

2
− C1

)2
]

Cα = 1

8

∫
Tr

{
1 − γ (p, J0, J1)γα(p)√

1 − γ 2(p, J0, J1)

}
d2p

(2π)2 (8)

where γα(p) denotesγ0(p) = γ (p, 1, 0) or γ1(p) = γ (p, 0, 1). For the model under
considerations = 1/2 should be substituted.

3. Discussion

The results of our estimates for the infinite CAVO lattice are collected together in
figure 1. In these figures we used the energy of the classical Neel stateEclassical(J0, J1) =
− (2J0 + J1) /8 as a unit and we plot the rescaled ground state energyẼ =
E(J0, J1)/Eclassical(J0, J1) as a function of the reduced coupling̃J = J1/(J0 + J1) using
notations that are similar to those adopted in [3]).

For each of the two perturbative expansion we plot the energy in all computed orders
starting from the second. A tentative Padé extrapolation indicates closest singularities at
respectivelyJ1/J0 ∼ 1.4 for the plaquette expansion andJ1/J0 ∼ 1.05 for the dimer one, but
the orders we reached are not sufficient to reveal the analytical structure of the expansions.
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Figure 1. The rescaled ground state energy per spinẼ versus the reduced coupling̃J . Thin and
solid lines represent, respectively, the linear and nonlinear spin wave approximations (7) and (8).
Dashed ascending and descending lines represent, respectively, the perturbation expansions for
the plaquette (4) and dimer singlets (6), starting from the second order. The highest orders (fifth
for plaquettes and seventh for dimers) are the bold dashes. The two (hardly distinguishable)
diamonds are variational Monte Carlo results [7] and [8].

However, both expansions appear to converge well in their dominant region, and we believe
that the highest order of perturbation provides a good estimate for the ground state energy.
Another fact to be noted is that the ground state energy per siteErvb(J0, J0) = −0.5499J0

following from (4) at the symmetric pointJ0 = J1 agrees perfectly with variational Monte
Carlo calculations of the singlet state that give−0.5510J0 [7] −0.5495J0 [8].

The precision of the 1/s expansion is generally less controlled than that of ordinary
perturbation theories, as the small parameter is not obvious (see [5] for discussion).
However, we see that at the symmetric point (J1 = J0) the first correction of orders
(linear spin waves) gives' 45% of the classical Neel energy and the second, nonlinear
correction, is∼ 10% of the first one. Such a convergence is only a little worse than in the
case of the square lattice where these ratios are 32% and 8%, respectively, and we expect
negligible further corrections.

From figure 1 we see that each of the three states minimizes the energy in some region
of J1/J0. Namely, the Neel state is stable in the interval 0.90 < J1/J0 < 1.6, and
the plaquette and dimer singlets are stable correspondingly below and above this region.
This is in a perfect quantitative agreement with the Monte Carlo simulations [9], but not
with the approximate treatments of [10] and [11], where the Neel interval is considerably
overestimated.

Inspecting the convergence of the perturbation series in figure 1 we find it rather poor
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Figure 2. Energies of different finite clusters cut out from the CAVO lattice and that of an
octahedron made up of plaquettes. Bold solid and dashed lines show the nonlinear spin wave
and perturbative results on the infinite lattice. Dotted lines represent the perturbation expansion
for the 24-site octahedron in the plaquette and dimer phase up to, respectively, fifth and sixth
order.

in the intermediate regionJ1/J0 ∼ 1.2, but quite reasonable near the visible borders of the
Neel state. Neither of our three curves for the ground state energy shows an anomaly in the
vicinity of the intersection point. Thus we conjecture the occurrence of discontinuous (first-
order) transitions as a function ofJ1/J0, as a result of a direct competition in energy. A
somewhat similar transition has been reported for a square lattice with additional frustrating
couplings [12]. In fact, presently available results obtained by finite-temperature simulations
or mean-field type approximations cannot exclude this scenario. It assumes that the gap
does not vanish on the border of the singlet regions, in agreement with recent perturbative
estimates [13] extrapolated to the pointJ1/J0 = 0.9.

On the other hand, the fact that we use entirely different approaches for each region
does not allow us to insist on the first-order character of the transitions. The situation
might be sensitive to minor quantitative changes due to higher-order correction, so that the
intersecting curves could turn out to be tangents.

We found it interesting to complete the picture by direct Lanczos-type diagonalization of
finite clusters. The results for four clusters and their configurations are presented in figure 2.
Three clusters are cut out from the infinite lattice with periodic boundary conditions imposed.
The cluster of four plaquettes is nonfrustrated, whereas those of five and six plaquettes are
both frustrated. We have also considered another nonfrustrated cluster of six plaquettes
designed ‘artificially’ as an octahedron with vertices decorated by plaquettes. The energies
are rather scattered due to small cluster sizes, but we observe that frustrated clusters tend
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to follow the singlet perturbation curves, while nonfrustrated ones follow the energy of the
Neel state. To verify our cluster expansion we have computed the perturbation expansion
for the six plaquette octahedron (to fifth order in the plaquette phase and to sixth order
in the dimer one). The results shown in figure 2 suggest that our perturbation series are
sufficiently precise in the regions of interest.

The energy spectrum of the frustrated five plaquette cluster is rather unusual. Due to
a special symmetry, two singlet states belonging to different representations intersect near
J1 ≈ 1.3 · J0, while the lowest triplet state is continuous inJ1/J0. Although this curious
example may be quite special, we consider it as confirming the possibility of first-order
transitions on the infinite CAVO lattice.
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